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NOMENCLATURE

Symbol Units Definition

A L2  Surface Area
An F/L 2  Fourier Coefficient

ai L Radius of sphere
B - Number of blades
CL - Lift Coefficient
c L/T Speed of Sound
D L4/T Dipole strength
d L 3/T Dipole strength per length
F F Force
G L4/T Dipole strength
h L Length of bound vortex
hT L2/T 2  Total enthalpy
I FT Impulse

i, j - Unit vector
i -- Bessel function
k I/L Acoustic wave number
L L Chord length
f L Length or integer index
M - Mach number

fii M/T Mass flow
m, n - Integer index
n-- Surface normal vector
P FL/T Power

p F/L 2  Pressure
R L Radius on rotating blade
r L Distance between points

s L Distance
T F Thrust
T FL Torque

t T Time

SL Mean blade thickness
ur L/T Fluid velocity in radial direct on
V L/T Velocity in absolute frame
vP L/T Velocity in circumferential direction

"" L3 Volume
W L/T Velocity Relative to blade

X, y, z - Coordinate axes
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NOMENCLATURE

Greek Units Definition

-• Angle with respect to a coordinate

r L 2/T Vortex strength

-y Angle of lift force to rotor plane

A V Displacement
- Small difference

- Fraction of power radiated acoustically

- Mach number - angle parameter

- Spherical surface angle

SL 2/T Velocity potential

p M/L 3  Fluid density

I/T Fluid vorticity

9 - Angle in circumferential direction

O 1/T Shaft rotation rate

Subscripts Definition

a Acoustic

B Blade
D At the propeller disc

i Isolated element

I Inner radius of element

L Lift

n Harmonic integer

o From origin, to the observer

s Source or surface

T Thickness

x, z Referred to the x or z direction
9 Referred to circmferential direction
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ABSTRACT

The generation of work and acoustic effects in a fluid by the action of
a turbomachine is examined using an unsteady potential flow model of a
low-speed open propeller. Individual blade thickness and lift characteristics
are represented as radially distributed dipole and vortex loop singularities
that rotate with the shaft. For multiple blades, the summed potentials of
the vortex loops alone account for the work input and the associated three-
dimensional energy distribution in the wake. With slight fluid compressibility,
tonal acoustic signals are produced by the motion of both singularities,
with the lift term typically dominating. Although the acoustic power input
also increases with additional blades, the dipole nature produces in the far
field a large apparent reduction due to cancellation. By relating both
singularities to equivalent orginating impulses, it can be seen how these
moving geometry-based functions also result in an unsteady potential field
that satisfies automatically the momentum and energy conservation laws.

ADMINISTRATIVE INFORMATION

This report was prepared by the research staff of the Propulsion and Auxiliary Systems
Department (Code 27) of the David Taylor Research Center (DTRC) for the purpose of
organizing the theoretical knowledge relating to a machinery component common to several
department projects. It was supported by department overhead funds.

INTRODUCTION

The conditions for potential flow are used frequently for the preliminary analysis of the
velocity fields created by the motion of solid surfaces through a fluid, Hess,W and almost
always for examining many of the accompanying acoustics, Howe.GV While such analyses are
often made separately, and in a frame of reference attached to the body, it is sometimes useful
to consider an unsteady formulation where the body moves. This approach provides both the
work and acoustics in the same solution. Although it is more difficult to formulate functions
that vary with space and time, this approach is useful for turbomachines since it emphasizes
the fundamental need for unsteady fluid motion in the energy transfer process, Dean,(-V and
leads smoothly to the origin of the tonal sound field. Fortunately, for multiple surfaces moving
uniformly through the absolute frame, the techniques of periodic functions are available, and
the additive property of elemental potential flow solutions can be used to isolate some of the
general features of these complex repeating flow fields.

For flows that are inviscid, irrotational, and incompressible, Lambed) shows that a scalar
velocity potential, 0, will exist as a solution to the Laplace representation of the continuity
equation. For solid surfaces moving through a fluid, such as a blade, the solutions to this
equation are a function only of the geometric boundaries at any instant. The condition used
for the solution is that the relative velocity normal to any solid surface is zero.

Wn = n..W = n.( - )= 0 v--v (M)

In addition, when there is a sharp trailing edge, as for a lifting blade, it is necessary to use a
Kutta condition at that point to require the leaving velocities to merge smoothly. In principle
all these conditions can be met by a Green's integral technique that sums a distribution of
elemental solutions over all blade surfaces to produce a total velocity potential at any point in
the fluid. Herein it will be preferred to use dipole element solutions to represent blade
thickness and a bound and shed vortex loop system to account for blade lift and wake effects.
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In an early study of how the unsteady velocity potential applied to moving blades,
Preston(ff showed that a repeating system of two dimensional vortex singularities provided a
time-varying velocity potential that gave the correct blade force and velocity change for a fluid
convecting across a simulated blade row. When used in the unsteady Bernoulli equation;

S)= - + V=- hT ) (2)

the time and space variation of the potential for the moving vortex row produced the
appropriate fluid enthalpy rise across the row, and therefore the work, for both axial and
centrifugal geometries. About the same time Van de Vooren and Zandbergen(§) simulated the
acoustics of an open propeller by using vortex loop and dipole singularities moving in a helical
path. More recently Hansont2 ) has expanded on the aeroacoustics of Goldstein&) to present a
unified potential theory based on delta functions for the work and acoustics of aircraft
propellers. In the marine field KerwinL2 has developed several Green's integral techniques for
analyzing the steady and unsteady (KinnasLO) flow fields of water propulsors, while Blake(W
has summarized many applicable acoustic principles.

From a mathematical standpoint Lighthill(LZ) has shown that it is the nature of distributed
elemental potential solutions to produce, at a distance, a flow field that is characteristic of one
larger equivalent singularity. In this way Lighthill developed the following useful formula for
the external force vector with which the surroundings act on the fluid in order to represent the
motion of a solid body.

d (xx) d-Y- + p A d--- (3)
2 atJ dt

For a rotating blade, this equation allows definition of the torque arising from shaft rotation,
and thus the work, as a function of the time rate of change of two momentum-like terms.
Clearly this work input must also appear as a change in the total enthalpy of the through-flow
in order to satisfy the energy conservation equation. Ughthill's formula is compatible with this
requirement since it considers the total vortex loop system set up in the wake of a lifting
surface and may be thought of as the three-dimensional extension of Preston's analysis.

Turning to the acoustic effect from a rotating blade, Lamb shows that for a slightly
compressible fluid the velocity potentials due to the surface motion are augmented by a term
involving their rate of change, and that this total potential function propagates away from the
source at the speed of seund. Again, in the far-field the details of the blade surface are
smoothed when the Mach number of the motion is small, such that the source appears as one
characteristic singularity. The remote acoustic pressure caused by a force applied near the
origin is commonly represented by the Curle(a) equation for propagation in a free field.

Pa (rt) = 4o • (4)
4wr~c I dt tr/

Here the force is exactly that from Lighthill's formula, and the square brackets are used to
represent the acoustic convention that the function must be evaluated at a retarded time based
on the distance from the source to the observer. For the blade of an ideal turbomachine
operating in a uniform flow, this force will be constant in magnitude and variable in direction.
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For both the work and acoustic behavior it thus appears that the elementary singularity
functions that are summed in potential flow to meet the surface boundary conditions of a
rotating blade must also be relatable to forces applied from the surroundings and work
appearing in the fluid. In fact this is fundamental to potential flow theory as developed by
Lamb, and emphasized by Lighthill who shows that at any instant both the vortex loop and
dipole velocity potentials are each the result of vector impulses applied to the fluid. As a
further convenient equivalence, Wua.) has shown how the velocity potentials of a small vortex
loop at the origin, and a dipole at the origin are related.

-- D -- (I'A) - - I/fp
-no * r2 = no * 4 r 2  ns = no 42 (5)

Here, I is the common impulse needed to create from rest either singularity. Therefore the
external force needed to move a blade from one point to the next can be determined from the
rate of change of the impulses that simulated the flow fields at the two points, i.e.,

-- • (6)

Recalling the Lighthill equation, its separate terms are due to such boundary impulses, and are
thus related implicitly to momentum and work effects in the fluid.

It is the purpose of this paper to explore how the unsteady forms of the vortex loop and
dipole singularity functions act to create the dynamic potential field of a turbomachine. In
doing this, local details will be neglected in favor of emphasizing the basic nature of these
functions and how their sum reflects the overall influence of a rotating blade. The geometry of
a stationary open axial flow propeller, with no adjacent surface, will be used as the simplest
arrangement in which to illustrate these unsteady effects. The complete distribution of
singularity strengths and directions will be assumed known from a Green's Integral solution, or
estimatable, and these will be considered to be grouped in radial blade slices. It will be
assumed that the blades are equal and equally spaced, sufficiently small that they act in
isolation, having steady rotation, uniform inflow and low Mach number. The development of
the steady thrust and torque as well as the form of the fluid total enthalpy change will be
expressed in terms of the unsteady singularities. Secondly, the response of a slightly
compressible fluid to the same singularities will be examined to show how the acoustic solution
is formed and why it differs from the incompressible solution. Some conclusions will be made
concerning the additional insight provided by an unsteady three-dimensional potential analysis.

TURBOMACHINE WORK

The basic purpose of a turbomachine is to convert shaft work into a change of the energy
of the fluid moving through the machine. As noted in the Introduction, for incompressible
potential flow, the blade surfaces of the turbomachine perform this work. Their effect on the
flow field is characterized, through the Green's Integral solution, by a surface distribution of
dipoles and vortex loops that represent the thickness and lift properties of each blade. The
additive property of potential flow solutions makes it possible to group these singularities in
radial segments and to study, at some distance, the field contribution of each, as long as the
components still satisfy the geometric boundary conditions for the multiple rotating blades.
Thus, as a blade rotates in a uniform in-flow, some external force must be applied to each

CDNSWC-PAS-92/52 3



radially positioned singularity that is equal to the rate of change of the surface impulse
associated with that singularity. The work input to the fluid is the integral of the scalar
product of these forces with the local blade velocity. From an overall energy balance, with
steady conditions at the boundaries, the power input from B equal blades must equal the gain
in total enthalpy of the mass flow through the machine, i.e.,

N N
Shaft Work = B Fd i -VB. = Bar, Ti = hT pVd.d = 'nD4hT (7)

i-I i=l

Here, the total enthalpy change can be determined by applying the unsteady Bernoulli equation
between any two positions in the flow.

Figure 1 illustrates the geometry to be examined, highlighting the fact that each blade will
be treated individually and the effects summed. In the following sections the unsteady forms of
the small dipole and vortex loop singularities will be examined separately to evaluate their
effect on the velocity potential and on the result of the uniform rotation of these singularities,
as viewed from a fixed frame of reference.

V&w

Fig. 1. Flow field geometry for open propeller.

Blade Thickness Work

Considering a symmetric blade at zero lift, the Green's integral solution simulates the blade
volume by a set of dipoles distributed along the chord and the radius, and oriented to oppose
the relative flow. Taking this effect at a distance, these dipoles may be lumped into smaller
groups distributed radially at the mass center of momentum for each radial segment. It is
known that steady flow over a fixed dipole does not require a force, but in this case the dipole
singularity is rotating so that it has varying direction and constant strength. It will therefore be
useful to examine this unsteady behavior of the thickness dipoles, so as to illustrate certain
aspects of the solution.

4 CDNSWC-PAS-92152



Looking at an isolated dipole singularity, the instantaneous velocity potential around any
arbitrary origin is:

no
4,ri (r) = 4r 2  GT (8)

Using the Green's surface integral theory, Lighthill shows that this total dipole strength may be
thought of as composed of two parts;

G*1 JJP ind

"-T "j Vn ns ds (9)

Here the vector velocity represents the motion of the fluid displaced by the blade volume. Thus
the force needed to cause the motion of an "effective" isolated volume is:

d IT. + a dVj dGT, 10
FT, (t) dt dV dt (10)

Using the dipole velocity potential in the surface integral for the first term gives;

= -Il pp ndsl dt = 2v(t)

which is recognized as both an impulse and the momentum of the "added mass".
Interestingly, this impulsive part of the dipole strength can also be interpreted in terms of a

volume integral of the moment of vorticity associated with the motion. To appreciate this it is
necessary to write the circumferential velocity on the surface of the effective sphere as

S•~)sing5 (12)
vi r ag 2

This circumferential velocity can be simulated with a shear layer distribution of vortex rings in
the surface of the apparent sphere with surface normal in direction Vi. Taking the following
volume integral over all the region yields values only for the radius a.

2 ;-x -Ta 'o~ ,2., a sin Ai~
~ (X× Thdv-= sine ( l2 1 la sing dpdr dA = - (t) (13)

Therefore the Lighthill formula for the force to move a solid body is directly related to the

force needed to change the spatial location of the velocity potential of an isolated dipole. The
total dipole strength and direction at any radius is equivalent to;
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-ý* Ti dV- AiV. t (14)•- Vi (t) = 2f

When the dipole is of constant strength, and rotating uniformly, the vector velocity is;

Vi (t) = Ox ri = iRi (-i sinOt+j cosflt) (15)

the vector acceleration is;

dVi ( x (t)0 - = - Q2R, (i cosOt + jsin0t) (16)

dt

and, as for any rotating body, the force due to acceleration is always radially inward and
normal to the velocity. Therefore, as expected, the incompressible work associated with the
rotation of the dipole that simulates the blade volume is zero since the scalar product of force
and velocity is zero.

Blade Lift Work
The velocity potential created in the fluid by a lifting surface is more complex than that of the

volume, but also with certain important equivalencies. This case will be examined by considering
radial segments of a blade of zero thickness rotating steadily at some constant angle of attack
to the relative flow. The basic singularity that allows the boundary conditions of zero normal
relative velocity on the surface and equal parallel velocities at the trailing edge is the vortex loop.
This three-dimensional potential flow function is initiated from a vortex line in the surface of
the blade with length equal to the radial increment and direction normal to the relative velocity.
Since vortex lines cannot end in the fluid, each end of the bound vortex is connected to shed
vortex lines that convect with the flow, and are of direction consistent with joining to the
bound vortex. As shown in Fig. 2, the shed vortex lines wrap helically around the axis of
rotation, and at some far downstream point connect to a starting vortex such that the whole
system makes a closed loop.

Fig. 2. Pattern of double helix vortex
loop in the wake of one blade.

6 CDNSWC-:PAS-92152



As a result of this vortex loop, two unique flow features appear. First, there is a net value

for the line integral of velocity around any closed path that includes a vortex line.

= r (17)

Close to a vortex line, the flow may be considered two dimensional such that a vortex velocity
potential referred to the axis of the line and compatible with the above is:

*L (r,O) = - (18)

In the wake, the pair of shed vortex lines are of opposite rotation and any large closed path
integral that includes both will have a value of zero. Nevertheless this double helix vortex
system in the wake is of major importance since it can also be considered as a !ong chain of
small vortex loops. As noted in the Introduction, the velocity potential of a small vortex loop
is, at a distance, the same as that of a dipole centered in the loop with direction equal to the
loop surface normal. Thus the vortex system shed from the rotating lifting blade represents
also a helical distribution of dipoles convecting along the axis of rotation. The strength of the
dipoles per unit length of the wake is given by

D- = - = dGL (19)
be 60 di

A second feature of the potential flow field produced by the vortex singularity is that the
local velocity potential can be ambiguous if a path is followed around one vortex line.
Although the total strength of the vortex is defined by one complete circuit, the velocity
potential function for the vortex line appears to increase with every sequential 21r circuit. In
order to prevent this uncertainty, permissible regions having continuity of the velocity potential
are restricted therefore to paths outside of the vortex loop. To accomplish this mathematically,
the vortex loop area is taken as a boundary surface of the flow field over which the velocity is
continuous, but across which the velocity potential experiences a step jump. Thus to return to
the proper starting value the discontinuity must be:

AoL = - r (20)

From a distance, the effect of a lifting surface on the fluid can then be viewed either as a
continuous injection of dipoles or as an expanding vortex loop. Choosing the latter, it is
helpful to note that a vorticity distribution can be simulated by a singular vortex circulation
whose strength is determined by integration over a surface normal to the vorticity. Therefore it
is also possible to characterize this fluid motion using the Lighthill integral of the moment of
vorticity.

Ft) -p - 2 (3 x T) d-V- prl'WhnL (21)

Thus the vorticity moment integral is a three-dimensional expression of the ubiquitous two-
dimensional equation for the force due to flow over a line vortex.

CDNSWC-PAS-92152 7



Behavior at Rotor Disc

Although the irtegral of Equation (21) includes the entire volume, the point of introduction
of the impulses, and thus the force, is on the blade surface. Integration of the detailed pressure over
a blade surface must also produce a total force consistent with the above volume integral. In any
event, this total force will be steady and, except for induced drag, in a direction normal to the
local relative velocity. Therefore, looking at the work and power transfer for any radial element

dWLi (r) = FLi (r) sin Yi (r) RT d0

PLi (r)= Ld = FLi sin 7'i Rii (22)
dt

Considering a short radial blade span over which the local vortex singularity strengths have
been summed to one equivalent radial vortex line, the resulting vortex distributions from several
blades are shown in Fig. 3. Applying the unsteady Bernoulli equation in the flow requires:

' -p " + (hTi) (23)

bd SURFACES

Fig. 3. Structure of vortex loops downstream
of mult'ple blades.

At some fixed point in the wake of the ith radial section, the velocity potential will jump by
Aoi for each blade passage. Thus if a mean total enthalpy change at any point in the wake is
considered, it should be given by the "average" rate at which vortex loops pass through that
point referred to fluid not effected by the propeller disc. For B equal blades:

AhTi B2r(r) (AV(r) VB(r))D (24)
8hT CN CP -2t 2
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Here the local change in angular velocity at the propeller disc has been taken as the two-
dimensional solution for a circumferentially uniform distribution of vortices, i.e.,

AV =Bri  (r) (25)
2ri

Equation (24) is the classic Euler turbomachine average head rise equation, and is the same result
as for the infinite blade number approximation, where the local details are not as important as the
overall behavior. Using this in an actuator disc model, the total ethalpy rise is experienced at
the disc as a jump in static pressure so that the force component in the axial direction, or the
thrust on the shaft, is obtained from a summation of axial forces over the disc.

N N N

=F A,,Ap,)i =J; '0- Br. (R2 -2 =, BriV, 'DR'-, (26)
i=l i=l- i=l

In a similar manner, the torque is the change in the mass flux of angular momentum across
the disc for all the radial segments.

N N
T =F4 inriA (RiVei) =• PV Mi (Ro-RI)i "RiBlri (27)

i=l i---

With B blades, Equation (27) can be used to give the overall energy balance of Equation (7)
for any stream tube passing through the rotor disc.

In engineering terms it is helpful to characterize the circulation for a high aspect ratio
blade by the equivalent lift coefficient:

w2
FLi = PriWihi = CLi p 2 1 hiLi (28)

Thus the local average blade circulation, i.e., the strength of the vortex singularity at any
radius, can be approximated by

ri = ....- t (29)
2

where the lift coefficient usually varies from 0 to 1. In practice it is not possible to maintain a
high circulation near the axis of rotation, so in general there will be a continuous variation
from zero at the hub to zero at the tip. Through Equation (24) this produces radial variations
in swirl angle and total enthalpy downstream of the disc.

Behavior in the Wake

For the far wake, the shed vortex system will have spiralled around the axis of rotation
many times, and isolated blade effects will be smoothed in the circumferential direction. In this
case the velocity will be steady and there will be an "apparent vorticity" in the fluid having a
direction following the particle pathlines where:

F _ ri &ri 
•L/ 

z

nL (z) (30)
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For steady inviscid rotational flow the momentum equation requires

V (hT) X- xV (31)

where for this case both the vorticity and the absolute velocity vectors are in cylindrical
surfaces. Since the local "apparent vorticity" changes sign in moving from an inner to an
outer radius as the circulation distribution peaks, the total enthalpy computed from the vortex
loop distribution is also seen to peak at some mid-radius. Since the static pressure at the wake
boundary is always ambient, the circumferential velocity components produce lower static
pressures toward the centerline.

To summarize, the three dimensional unsteady effect of a rotating vortex loop singularity is
to modify the flow field in the wake of one or more blades in such a way as to account for
the torque, thrust and work of the turbomachine. It should be pointed out that if the blades
were stationary, a vortex system would still develop, but there would be no work input and no
change in the fluid total enthalpy, such that kinetic energy changes would be balanced by static
pressure changes.

TURBOMACHINE ACOUSTICS

As a moving blade acts on an unbounded fluid that is slightly compressible, vortex
loop/dipole singularity functions are still used to satisfy the surface boundary conditions of the
Green's integral solution. However because of the small compressibility, additional terms arise
in the velocity potential to account for the time rate of change of the strength, and for the
acoustic propagation to the far field. To examine the acoustic effect it will be most convenient
to express the behavior of all singularities in terms of the dipole representation of blade
motion. Thus for a general dipole at the origin for which both strength and direction are
changing, the resulting velocity potential at any remote point in a slightly compressible fluid is
given by.

0a(rt) = ýo 4 [(M2O + .) ) f(t) 1t-r/c (32)

Here, the first term will, at low mach number, be the same as in the previous incompressible
solution, but now with its effect delayed by the sound speed and the distance. The second term
is the compressible acoustic contribution which has the same direction as the incompressible
dipole, but with a strength depending on the rate of change of the incompressible dipole. In
the following, the acoustic work done on the fluid by each isolated singularity will be
computed first from a near field solution, and then compared with the far field Curie result.
The retarded time behavior and the effect of multiple blades will be suppressed initially, and
accounted for later, in order to emphasize the compressible behavior of these rotating
singularities.

Blade Thickness Acoustics

It was shown previously that the power input to a rotating incompressible dipole that
simulated blade thickness was zero, but now the acoustic power needs to be determined. As
with the former case, certain simplifications from a distributed dipole model are possible since:
1.) potential flow solutions are additive, 2.) the motion of a non-lifting blade volume is well-
described by a set of dipoles pointing toward the relative velocity, and 3.) from a distance

10 CDNSWC-PAS-92/52



the precise shape of the surface is less important than the total displaced volume. With a
restriction that the acoustic wavelength be large compared to the surface dimensions, it is thus
possible to account for the effect of a moving non-lifting blade by considering a small set of
dipoles. This set is to be distributed along the span, having strengths appropriate to the volume
segments each represents and with direction opposing the local relative velocity. The thickness
velocity potential at some distance from the several isolated sources is:

N

OaT( r,t) -no 41Drri2+ ~~()' nD~t (33)i=l 42 4rric " t-r/c

The acoustic behavior of this assembly can be characterized by examining any one component,
each of which is equivalent to a simple sphere. Furthermore, the instantaneous velocity vector
of each isolated volume can be considered as two superimposed phased linear oscillations in
perpendicular directions in the plane of rotation. Consequently, for an observer in the x-z plane,
at a distance from the source that is large compared to its size, Fig. 4, only the x direction
motion will be sensed. Adapting Lamb's classic solution for the oscillation of a sphere at small
amplitude about the origin, the periodic motion along the x axis can be defined as;

Vxi(t) = Vxo ei(tt = f2RieJfnt (34)

;' "* oBsERvER I

Fig. 4. Geometry for propagation of an acoustic signal
from a rotating FZ

In order to satisfy a solid surface boundary c:ondition at radius ai, compatible with an isolated
volume:

ur (r= ai) = a--- = Vx o/x(35)
% r r
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Assuming that the strength of the dipole that simulates this sphere is also periodic allows the
magnitude and phase to be computed from the boundary condition.

( 1-(kai)2/2 - jkai )j

DTit) = 2-6i Vxoi (1-(kai)2/2)2 + (kai)2

The total pressure on the surface of the isolated sphere is given by the rate of change of the
velocity potential.

P cosO 3at = a. =13 2 A-02Rjj (1 +jkaj)DT.(t) (37)PTi •f - A = ai 42"

Because the kinetic energy of the fluid is symmetric over the surface of the sphere, it is
possible to use this total pressure in a surface integral to find the force that the sphere applies
to the fluid.

coo (w3 sn~xx-'PAi Q)2Ri ( + )eJ•t (38)

FaT ix(t) = PTT cOS0x ) sin 1 dfx-- 2 2

The x direction force is seen to be primarily inertial, as in the incompressible case, but with a
small real part. Taking the product of this force with the velocity of the body gives the real
acoustic power introduced to the fluid.

Pai Re IFxi.Vi = p Vx.0 (Vx,) (39)
aj 2 2 21 ~ 2

Reviewing this calculation, it appears that any work that enters the fluid from the motion
of a rigid surface must be transmitted via the added mass part of the dipole velocity potential.
At first glance this does not seem consistent with Lighthill's formula for the force associated
with the motion of a rigid body;

F(t) pA dV (40)
2 dt

which indicates that the fluid experiences an external force due to both the added and
displaced masses. Turning to the Curie expression for the acoustic pressure in the far field due
to motion of a sphere in the x direction,

Pa" (41)PaTi -- 41rc L dt Jt-r/c

the proper value for the force in this equation is the total experienced by the fluid, without
regard to any phase relationship. Using Lighthill's value;

12 CDNSWC-PAS-92.52



PT = cosOt (3 p4aO3 ) eif)(1-r/c) (42)
PaTix = _4Irrc

which implies again that both the added and displaced masses are important.
Looking at the acoustic velocity potential in the far-field, it can be seen that the residual

particle velocity is siAely radial and in-phase with the acoustic pressure.

u (r, t) = -r (r, t) (43)
rai~ Xr Pc Pix

Combining these into an acoustic intensiy and integrating to determine the average power
being transferred across a large spherical surface by the x direction motion gives:

P 1~j ( Vi) kp (44)
This is identical to the power input from the surface force on the sphere oscillating in the x
direction. Thus both the Lamb and the Curie expressions give the same result, but the former
is accurate both near and far from the body.

In summary, the acoustic work associated with the motion of a rigid body is non-zero. It originates
as a compressible effect of the sequence of impulses necessary to change the momentum of the surface
vortex loops, i.e., the added mass, from one instant to the next. When both x and y motions
are combined, this "thickness" source is seen to be a dipole of constant strength that rotates
uniformly in direction with a total acoustic power output twice the above value. As shown in
Fig. 5, the acoustic pressure field takes the form of outwardly spiralling positive and negative
wave fronts propagating from the origin. These fronts also have a lobed pattern with a peak in
the x-y plane and a null on the axis of rotation. This first order approximation is valid for low
speed machines where the acoustic wavelength is large in comparison to blade dimensions.

Fig. 5. Outwardly propagating spiral acoustic front
for a rotating steady dipole.
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Blade Lift Acoustics
In order to examine the acoustic effect of the lift vortex system, a blade of zero thickness,

but having a trailing edge Kutta condition, will be considered. As pointed out previously, the
boundary conditions for this geometry can be met by using the growing vortex loop singularity
where the bound segment of the loop is attached to the blade. To simplify the analysis, the
velocity of an isolated blade element will be taken again as a phased combination of linear
oscillations in the x and y coordinate directions. Since the field response is cylindrically
symmetric, the location of the observation point is arbitrary, and is taken to be in the x-z
plane. When viewed from this point only x direction effects will be seen, and the projection of
the length of an element of blade span will appear to vary periodically as:

(Ro-Rl)ix (t) hoi j eP (45)

Once a small vortex loop is formed, it only convects downstream at constant strength with no
external force available to change the magnitude or direction and thus has no effect on the
acoustics. However at the surface of the blade there exists an external periodic force needed to
generate new vortex loop area.

FLxi (t) = pGx O6a) = PriVzD hoi eJit (46)

Using this periodic form, it is straight-forward to write an expression for G, and therefore for
the component of the velocity potential that originates at each instant using Equation (32).

0•L(i(r,4xt)-) cOSox + j
- os3 n4ir 4w~rrc ) t-r/c

Examination of the near-field acoustic behavior for the periodic vortex loop is not as
simple as was the case for the isolated sphere. Nevertheless it is still possible to compute the
rate of doing acoustic work on the fluid external to an arbitrary sphere surrounding the source.
Considering that the convecting dipoles passing through the surface of this sphere are described
already by the incompressible work and not of interest here, the remaining average flux of real
work passing radially through the control surface is;

•Lxi (r, Ox, t) = -L Re U{ PTLx UrL J (48)

The total pressure and radial velocity functions can be formed easily from the periodic lift
velocity potential by assuming that the time delay function does not alter the previous steady
value, and by taking the variation of the position of the origin to be second order, thus giving:

PrLxm(r'1xt) = cosx PrVDhi (4•I 4•r ",(jr(t -rc)

(49)

urLXi(r,.xt) = cosio Ii ihoi. (42 - 4j = lr
4 DrNSC- 4rrC2  S-r9)
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Integrating the power transfer over the surface of a sphere surrounding this source gives;

Pa 2,1r2 sin~xd3x Fx) 02

aLi jI ýLx1 3 P 8 i-C3  (0

Expressing the magnitude of the lift force for any blade element in terms of the local lift

coefficient and relative velocity provides an engineering level expression for the acoustic power.

CLi AB-i .zD.. VW i
pai= (F~i.VC C - (51)

48YR ( Ic _

The first term represents the steady incompressible power produced by that blade element, so
that the fraction of the lift power that appears as acoustic energy propagating outward is
approximately:

I CL AB MM
2 24 (MzD Mw Me) (52)

Even though this is an averaged result, it can be seen that those radial elements with the largest
product of lift coefficient and blade area will contribute most to the sound power.

Using the Curie formula to compute the far-field pressure and acoustic power at some
point in the x-z plane gives exactly the above result for oscillation in the x direction. But a
single application of the Curie equation does not reveal that the source is in fact a rotating
dipole. This behavior can be seen from a computation for which the arbitrary observation
point is located in any plane that includes the z axis. This shows that the total radiated
acoustic signal from blade lift is due to a dipole of constant amplitude but with rotating
direction and that the mean power is twice that from the x motion alone. As with the thickness
sound, Fig. 5, the above result is correct when the Mach number is low and the acoustic
wavelength is large compared to the blade dimensions.

Effect of Acoustic Delay

The acoustic signals from both the thickness and lift dipoles of a single blade have the
form of outwardly propagating spiral pressure surfaces alternating in sign with radial distance
from the origin. Although this model represents the general nature of the acoustic field for a
single source at the origin, it is now important to account for the fact that the source is also
rotating at some finite distance from the origin. Two changes occur. First, the time delay
operation of the Curie equation provides a Doppler shift between locations where the source is
perceived to be advancing or retreating. This distorts the fundamental pure tone in a manner
related to the Mach number of the source. Secondly, for a balanced multi-bladed rotor, the
sum of the separate force vectors in the plane of rotation is always zero. Thus if all were
applied together, no acoustic signal would be predicted unless the retarded position was
considered.

Both effects are accounted for by an analysis developed first by Gutin(- for the lift force,
with the consequence that the result is often referred to as "Gutin Sound". This analysis
assumes that the acoustic pressure at any axially symmetric remote field point will always be
periodic at the rotational frequency and its harmonics.
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Go

Pa (ro,, Oz. = E A. (r., 6z) eJn¶1t (53)

n = -oo

The unknown Fourier coefficients may be computed by accounting for the acoustic delay from
each angular position of the rotating blade as described by Quandt(LW. By the geometry of a
rotating blade, the distance from any source point to an arbitrary field point measured from
the origin is:

r se ro -(I sinfz cos0s (54)
to

Accounting for the acoustic delay, the angular position of the blade at the instant a signal
originated that reaches the observer at some later time can be found from:

[0s] = -t- + R s c cos[es]) + 60S (55)

Solving for the Fourier reference angle appropriate to any field point gives

Ot =[s] + O - Ecos[OS] - OS (56)
c 0

where the parameter • = Ve sin~z/c. This reference -me can be substituted into the periodic
form of the Curie equation to give an expression for he Fourier coefficients

F sin-y sinz I jn(Oro/c- 5so) aC sin~se-nes-ccss) d~s (57)
41rroc 21r a

Using the identity

e-ntcosOs = , (-j)mejmOJ ..(-n) (58)

and interchanging the order of integration and summation gives two Bessel functions that can
be combined to give the acoustic pressure for a single source rotating about the origin at radius
R. If there are B equal and equally spaced blades, and the blade force is assumed to be located
at some radius, the resulting acoustic pressure becomes

PaB(rod0z~t) = BF sinY BI (j)Bt+ I j.B(Bet) dBlO(t-ro/c) (59)
P-rr°R r=-d
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For turbomachines of low blade number and low Mach number it is convenient to use the
following approximate expression for the magnitude of the Bessel function

[jB(Bft )l (Be /2)B;. < 1(60)

Be! (

If there is only one blade, B = 1, and the acoustic pressures for the first several harmonics are;

n= 09Z)=F sinY (M1inz
n=1 PaiB= lr'z 4rro-- (M2inz

F sin^(

n=2 Pal(roOz) = 4-- (Me sint3z)2

F e sY 27
n=3 PaB.l(roz) 1 41rrR (M si• 6 (61)

Thus for a rotor with one blade at low Mach number most of the acoustic power is in the first
harmonic such that a somewhat pure tone is observed with a directional peak in the plane of
rotation. If now there are three equal blades, the first three harmonics become:

3F sinY 9
n= 1 PaB 3 (r °,#z) = -roR (MM sinO z)3  9

n= a3=341rrR 16
3F sinY 3

n=2 P=B= 3 (ro3Z) - (Me sinflz) 6 92 - 3
n2 PB341rr 0 R 40

n=3 paE= ro,3z) - 3F sinY 94 . )4 (62)
-4'-rrR (Me sin~z)9 50"(2

With multiple blades, summation of the vector forces causes considerable cancellation of the
perceived signal and a further concentration of acoustic power at the blade passing frequency.
In addition, the directionality is focused even more in the plane of rotation.

Ratio of Lift to Thickness Sound

The above results are independent of whether the source is due to the thickness or lift
effect, since only the magnitude of the force applied to the fluid in the plane of rotation was
important. The relative acoustic significance of the two sources can be assessed by taking the
ratio of the total power from each for the single blade case.

SFLV, CL A:ýB- M
24 jLe "2 (MzD MW Me) (63)

TT PAB V02 f0 (ka) 3 (1/4)

Defining a mean thickness for any isolated radial slice of the blade gives

ABT'= AB (64)
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and the power ratio simplifies to

P-L )2(._)2 ( VZD W )3 (65)

V(65)

Since the lift coefficient and the velocity ratios are usually of the order of one, the ratio of lift
to thickness sound power will vary as the square of the radius to thickness ratio. Near the
blade tip the sound will originate mainly from the lift force, while at the root, thickness will be
more important. Considering some nominal conditions for moderately loaded slender blades
with a mean thickness to radius ratio of 50%o, the pure potential Gutin sould power due to
thickness may be 3% of that due to lift. For lightly loaded blades the proportion of the
radiated sound power due to thickness can be significantly greater. In either case, the acoustic
signal will be highly tonal, predominantly in the plane of rotation, and exhibit a high degree of
cancellation from multiple equal and equally spaced blades.

CONCLUSIONS
Using the principles of unsteady potential flow, the energy transfer mechanisms of an ideal

turbomachine have been explored using the example of a low-speed propeller. Both dipole and
vortex loop singularities, which are normally considered to be distributed over the surface of a
blade to match thickness and lift boundary conditions, were separated and treated as a series
of elements summed in radial slices and rotating uniformly in the absolute frame. The resulting
unsteady potential fields included both incompressible and acoustic energy terms, with
corresponding power flows in both the near and far fields.

For the incompressible case, each vortex loop on each blade contributes to the work in the
convected wake through application of the unsteady Bernoulli/Euler Equations. The torque on
the shaft is represented conveniently by Lighthill's vorticity moment formula for the force on
each moving body. Examination of the rotating dipole showed no contribution to the work,
but did reveal how the added mass term is related to the surface impulse feature of potential
flow. These vector impulses, associated with the creation of each flow field instantaneously
from rest, provide a common link between both singularities.

For the slightly compressible case, both the thickness and lift characteristics of a rotating
blade were shown to generate tonal acoustic power in the fluid. Each source appears as a
steady rotating dipole with power input proportional to a real or apparent incompressible
power, but reduced by the cube of the blade Mach number. For multiple blades, significant
cancellation occurs in the far-field such that the perceived power is further reduced
exponentially in Mach number. For typical blade loadings and geometries the lift effect is the
dominant source.

Performing this unsteady potential analysis is useful in providing a complete and consistent
description of the energy transfer processes of a turbomachine. In addition, it underscores the
relationship between the dipole and vortex loop singularity functions and the surface impulses.
This clarifies why these blade singularities, formed only to meet the geometric boundary
conditions of the continuity equation, also satisfy inherently the momentum and energy
requirements throughout the fluid field.
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